## Differential Equations

A Differential Equation is an equation relating an unknown function and one or more of its derivatives.

Examples Population growth : $\frac{d P}{d t}=k P$, or $\quad \frac{d P}{d t}=k P\left(1-\frac{P}{K}\right)$.
Motion of a spring with a mass $m$ attached: $m \frac{d^{2} x}{d t^{2}}=-k x$. Body of mass $m$ falling under the action of gravity $g$ encounters air resistance. The velocity of the falling body at time $t$ satisfies the equation : $m \frac{d v(t)}{d t}=m g-k[v(t)]^{2}$.
General Examples

$$
y^{\prime}=x-y, \quad y^{\prime}=y x, \quad y^{\prime}+x y=x^{2}
$$

The Order of a differential equation is the order of the highest derivative that occurs in the equation.

## Example

- The differential equation $2 \frac{d^{2} x}{d t^{2}}=-10 x$ has order $\qquad$
- The differential equation $\frac{d v(t)}{d t}=32-10[v(t)]^{2}$ has order $\qquad$


## Differential Equations

A Differential Equation is an equation relating an unknown function and one or more of its derivatives.

Examples Population growth : $\frac{d P}{d t}=k P$, or $\quad \frac{d P}{d t}=k P\left(1-\frac{P}{K}\right)$.
Motion of a spring with a mass $m$ attached: $m \frac{d^{2} x}{d t^{2}}=-k x$. Body of mass $m$ falling under the action of gravity $g$ encounters air resistance. The velocity of the falling body at time $t$ satisfies the equation : $m \frac{d v(t)}{d t}=m g-k[v(t)]^{2}$.
General Examples

$$
y^{\prime}=x-y, \quad y^{\prime}=y x, \quad y^{\prime}+x y=x^{2}
$$

The Order of a differential equation is the order of the highest derivative that occurs in the equation.

## Example

- The differential equation $2 \frac{d^{2} x}{d t^{2}}=-10 x$ has order $\underline{2}$
- The differential equation $\frac{d v(t)}{d t}=32-10[v(t)]^{2}$ has order $\underline{1}$


## Solutions to Differential Equations

A function $y=f(x)$ is a solution of a differential equation if the equation is satisfied when $y=f(x)$ and its appropriate derivatives are substituted into the equation.

Example Match the following differential equations with their solutions:

## Equation

$$
\begin{array}{cc}
\frac{d y}{d t}=2 y & y=x-1 \\
y^{\prime}=x-y & y=\ln \left|1+e^{x}\right| \\
y^{\prime}=\frac{e^{x}}{1+e^{x}} & y(t)=10 e^{2 t} \\
& y=x-1+\frac{1}{e^{x}}
\end{array}
$$

- $\frac{d y}{d t}=2 y \rightarrow y(t)=10 e^{2 t}, \quad y^{\prime}=x-y \rightarrow y=x-1+\frac{1}{e^{x}}$,

$$
y^{\prime}=x-y \rightarrow y=x-1, \quad y^{\prime}=\frac{e^{x}}{1+e^{x}} \rightarrow y=\ln \left|1+e^{x}\right|
$$

## Solutions to Differential Equations

When asked to Solve a differential equation we aim to find all possible solutions. Our solution will be a family of functions. A General Solution is a solution involving constants which can be specialized to give any particular solution.
Example The general solutions to the differential equations given above are

## Equation

$$
\begin{gathered}
\frac{d P}{d t}=2 P \\
y^{\prime}=x-y \\
y^{\prime}=\frac{e^{x}}{1+e^{x}}
\end{gathered}
$$

## General Solution

$$
P(t)=K e^{2 t}
$$

$$
y=x-1+\frac{c}{e^{x}}
$$

$$
y=\ln \left|1+e^{x}\right|+C
$$

## Example

- For the differential equation $\frac{d y}{d x}=\frac{e^{x}}{1+e^{x}}$, we can find the general solution using methods of integration. (we will solve the others using the methods of seperable equations and Linear First order equations.)


## Initial Value Problems

The graph below shows a sketch of some solutions from the family of solutions to the differential equation $\frac{d y}{d x}=\frac{e^{x}}{1+e^{x}}$,


Note that only one of these solution curves passes through the point $(0, \ln 2)$, i.e. satisfies the requirement $y(0)=\ln 2$.

An Initial Value Problem asks for a specific solution to a differential equation satisfying an initial condition of the form $y\left(t_{0}\right)=y_{0}$.
Example Problem: Using the general solution given above $\left(y=x-1+\frac{c}{e^{x}}\right)$, find a solution to the initial value problem $y^{\prime}=x-y$ with the property that $y(0)=0$.

- We have $Y(0)=0-1+\frac{C}{e^{0}}=C-1$. We set $C-1=0 \rightarrow C=1$, $y(t)=x-1+\frac{1}{e^{x}}$.
(At the end of your lecture notes, we give an approximate numerical solution to this problem using Euler's method.)


## Direction Fields

If we have a differential equation of the type

$$
y^{\prime}=F(x, y)
$$

where $F(x, y)$ is an expression in $x$ and $y$ only, then the slope of a solution curve at a point $(x, y)$ is $F(x, y)$. We can use the formula to calculate the slopes of the graphs of the solutions of the differential equation that pass through particular points on the plane. We can draw a picture of these slopes by drawing a small line (or arrow )indicating the direction of the curve at each point we have considered.
Example Consider the equation $y^{\prime}=y-x$

- The graph of any solution to this differential equation passing through the point $(x, y)=(2,1)$ has slope
- $y^{\prime}=y-x=1-2=-1$.
- The graph of any solution to this differential equation passing through the point $(x, y)=(0,1)$ has slope
- $y^{\prime}=y-x=1-0=1$.
- The graph of any solution to this differential equation passing through the point $(x, y)=(-1,1)$ has slope
- $y^{\prime}=y-x=1-(-1)=2$.


## Direction Fields

We can get some idea of what the graphs of the solutions to differential equation look like by drawing a Direction Field where we draw a short line segment (or arrow) with slope $y-x$ at each point $(x, y)$ on the plane to indicate the direction of a solution running through that point. The picture below shows a computer generated direction field for the equation $y^{\prime}=y-x$.


For any Differential equation of the form $y^{\prime}=F(x, y)$ we can make a direction field by drawing an arrow with slope $F(x, y)$ at many points in the plane. The more points we include, the better the picture we get of the behavior of the solutions.

## Direction Fields

We can use this picture to give a rough sketch of a solution to an initial value problem.

Example Below is a sketch of a solution to the differential equation $y^{\prime}=y-x$, where $y(1)=3$.

we see that a solution to the initial value problem $y^{\prime}=y-x, y(1)=3$ passes through the point (1.3) and follows the direction of the arrows.

Sketch a solution to the equation with $y(2)=0$ on the vector field above.

## Direction Fields

We can use this picture to give a rough sketch of a solution to an initial value problem.

Example Below is a sketch of a solution to the differential equation $y^{\prime}=y-x$, where $y(1)=3$.

we see that a solution to the initial value problem $y^{\prime}=y-x, y(1)=3$ passes through the point (1.3) and follows the direction of the arrows.

Sketch a solution to the equation with $y(2)=0$ on the vector field above.

## Direction Fields

In this way we can get some idea of what the family of solutions to the differential equation $y^{\prime}=y-x$ look like.


## Euler's Method

Euler's method makes precise the idea of following the arrows in the direction field to get an approximate solution to a differential equation of the form $y^{\prime}=F(x, y)$ satisfying the initial condition $y\left(x_{0}\right)=y_{0}$.
For such an initial value problem we can use a computer to generate a table of approximate numerical values of $y$ for values of $x$ in an interval $\left[x_{0}, b\right]$. This is called a numerical solution to the problem.

Example Estimate $y(4)$ where $y(x)$ is a solution to the differential equation $y^{\prime}=y-x$ which satisfies the initial condition $y(2)=0$, on the interval $2 \leq x \leq 4$.

Euler's method approximates the path of the solution curve with a series of line segments following the directions of the arrows in the direction fields.

- First we choose the Step Size of our approximation, which will be the change in the value of $x$ on each line segment. In general a smaller step size means shorter line segments and a better approximation. We will use $h=0.2$ as the step size for our example above.


## Euler's Method

Example Estimate $y(4)$ where $y(x)$ is a solution to the differential equation $y^{\prime}=y-x$ which satisfies the initial condition $y(2)=0$, on the interval $2 \leq x \leq 4$. Use a step size of $h=0.2$.
The first point on our approximating curve is determined by the initial condition $y\left(x_{0}\right)=y_{0}$. The corresponding point on the curve is $\left(x_{0}, y_{0}\right)$.


- In the case of the above example, the initial value gives us that the first point on our approximating curve is $(2,0)$
- The green curve shown here is the actual solution to the differential equation which passes through the point $(2,0)$. It is the curve that we are trying to estimate.


## Euler's Method

To get the next (defining) point on the curve, we follow the arrow in the direction field which starts at $\left(x_{0}, y_{0}\right)$ (with slope $F\left(x_{0}, y_{0}\right)$ ) until we get to a point where $x_{1}=x_{0}+h$. (recall $h$ is the step size).


- We can write down algebraic formulas for the endpoint of this arrow $\left(x_{1}, y_{1}\right)$. We know that $x_{1}=x_{0}+h$. We have the slope of the arrow is $F\left(x_{0}, y_{0}\right)=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{y_{1}-y_{0}}{h}$.
- Therefore $y_{1}-y_{0}=h F\left(x_{0}, y_{0}\right)$ or $y_{1}=y_{0}+h F\left(x_{0}, y_{0}\right)$.
- In our example $x_{1}=2+.2=2.2$ and $y_{1}=0+(.2)(0-2)=-.4$.


## Euler's Method

We draw the first segment of our approximating curve as the line segment between the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.


- To get the next (defining) point on the curve, , we follow the arrow in the direction field which starts at $\left(x_{1}, y_{1}\right)$ (with slope $F\left(x_{1}, y_{1}\right)$ ) and which ends at $x_{2}=x_{1}+h$. In other words, we repeat the process starting at $\left(x_{1}, y_{1}\right)$. By the same argument, we get the following equations for the point ( $x_{2}, y_{2}$ ):
$x_{2}=x_{1}+h, \quad$ and $\quad y_{2}=y_{1}+h F\left(x_{1}, y_{1}\right)$.
- The second line segment of our approximating curve is the line between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.


## Euler's Method

We repeat the process until $x_{n}=a$, if we wish to approximate $y(a)$. Note that we should choose the step size, $h$, so that $\frac{a-x_{0}}{h}$ is an integer $n$.


- In our approximation, we wanted to estimate $y(4)$. We started at the initial point with $x=2$. With a step size of $h=0.2$, we get to our approximation in $\frac{4-2}{h}=\frac{4-2}{.2}=\frac{2}{.2}=10$ steps.
- Note how our approximate solution(in red) compares to the true solution (in green). To improve accuracy, one can make the step size smaller.


## Euler's Method

In Summary, to use this approximation;

- We first decide on the step size $h$. (If we want to estimate $y\left(x_{0}+L\right)$ where $y$ is a solution to the IVP $y^{\prime}=F(x, y), y\left(x_{0}\right)=y_{0}$, and we wish to use $n$ steps, then the step size should be $L / n$. )
- Our series of approximations is then given by
- Initial point $=\left(x_{0}, y_{0}\right)$.
- $y_{1}=y_{0}+h F\left(x_{0}, y_{0}\right) \quad$ new point on approximate curve $=\left(x_{1}, y_{1}\right)=$ $\left(x_{0}+h, y_{1}\right)$.
- $y_{2}=y_{1}+h F\left(x_{1}, y_{1}\right)$ new point on approximate curve $=\left(x_{2}, y_{2}\right)=$ $\left(x_{0}+2 h, y_{2}\right)$.
- $y_{3}=y_{2}+h F\left(x_{2}, y_{2}\right)$ new point on approximate curve $=\left(x_{3}, y_{3}\right)=$ $\left(x_{0}+3 h, y_{3}\right)$.
- $y_{i}=y_{i-1}+h F\left(x_{i-1}, y_{i-1}\right)$ corresponding point on approximate curve $=$ $\left(x_{i}, y_{i}\right)=\left(x_{0}+i h, y_{i}\right)$


## Euler's Method

Example Use Euler's method with step size $h=0.2$ to find an approximation for $y(4)$, where $y$ is a solution to the initial value problem

$$
y^{\prime}=y-x, \quad y(2)=0
$$

| $i$ | $x_{i}=x_{0}+i h$ | $y_{i}=y_{i-1}+h\left(y_{i-1}-x_{i-1}\right)$ |
| :---: | :---: | :---: |
| 0 | 2 | 0 |
| 1 | 2.2 | -0.4 |
| 2 | 2.4 | -0.92 |
| 3 |  |  |
| 4 |  |  |
| 5 |  |  |
| 6 |  |  |
| 7 |  |  |
| 8 |  |  |
| 9 |  |  |
| 10 |  |  |

## Euler's Method

Example Use Euler's method with step size $h=0.2$ to find an approximation for $y(4)$, where $y$ is a solution to the initial value problem

$$
y^{\prime}=y-x, \quad y(2)=0
$$

| $i$ | $x_{i}=x_{0}+i h$ | $y_{i}=y_{i-1}+h\left(y_{i-1}-x_{i-1}\right)$ |
| :---: | :---: | :---: |
| 0 | 2 | 0 |
| 1 | 2.2 | -0.4 |
| 2 | 2.4 | -0.92 |
| 3 | 2.6 | -1.584 |
| 4 | 2.8 | -2.4208 |
| 5 | 3 | -3.46496 |
| 6 | 3.2 | -4.75795 |
| 7 | 3.4 | -6.34954 |
| 8 | 3.6 | -8.29945 |
| 9 | 3.8 | -10.6793 |
| 10 | 4 | -13.5752 |

