
Differential Equations

A Differential Equation is an equation relating an unknown function and one
or more of its derivatives.

Examples Population growth : dP
dt

= kP, or dP
dt

= kP(1− P
K

).

Motion of a spring with a mass m attached: m d2x
dt2

= −kx .
Body of mass m falling under the action of gravity g encounters air resistance.
The velocity of the falling body at time t satisfies the equation :
m dv(t)

dt
= mg − k[v(t)]2.

General Examples

y ′ = x − y , y ′ = yx , y ′ + xy = x2.

The Order of a differential equation is the order of the highest derivative that
occurs in the equation.

Example

I The differential equation 2 d2x
dt2

= −10x has order

I The differential equation dv(t)
dt

= 32− 10[v(t)]2 has order
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Differential Equations

A Differential Equation is an equation relating an unknown function and one
or more of its derivatives.

Examples Population growth : dP
dt

= kP, or dP
dt

= kP(1− P
K

).

Motion of a spring with a mass m attached: m d2x
dt2

= −kx .
Body of mass m falling under the action of gravity g encounters air resistance.
The velocity of the falling body at time t satisfies the equation :
m dv(t)

dt
= mg − k[v(t)]2.

General Examples

y ′ = x − y , y ′ = yx , y ′ + xy = x2.

The Order of a differential equation is the order of the highest derivative that
occurs in the equation.

Example

I The differential equation 2 d2x
dt2

= −10x has order 2

I The differential equation dv(t)
dt

= 32− 10[v(t)]2 has order 1
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Solutions to Differential Equations

A function y = f (x) is a solution of a differential equation if the equation is
satisfied when y = f (x) and its appropriate derivatives are substituted into the
equation.

Example Match the following differential equations with their solutions:

Equation Solution

dy
dt

= 2y y = x − 1

y ′ = x − y y = ln |1 + ex |

y ′ = ex

1+ex y(t) = 10e2t

y = x − 1 + 1
ex

I dy
dt

= 2y → y(t) = 10e2t , y ′ = x − y → y = x − 1 + 1
ex ,

y ′ = x − y → y = x − 1, y ′ = ex

1+ex → y = ln |1 + ex |.
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Solutions to Differential Equations

When asked to Solve a differential equation we aim to find all possible
solutions. Our solution will be a family of functions. A General Solution is a
solution involving constants which can be specialized to give any particular
solution.
Example The general solutions to the differential equations given above are

Equation General Solution

dP
dt

= 2P P(t) = Ke2t

y ′ = x − y y = x − 1 + C
ex

y ′ = ex

1+ex y = ln |1 + ex |+ C

Example

I For the differential equation dy
dx

= ex

1+ex , we can find the general solution
using methods of integration. (we will solve the others using the methods
of seperable equations and Linear First order equations.)
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Initial Value Problems

The graph below shows a sketch of some solutions from the family of solutions
to the differential equation dy

dx
= ex

1+ex , :

H0, lnH2LL
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Note that only one of these solution curves passes through the point (0, ln 2),
i.e. satisfies the requirement y(0) = ln 2.

An Initial Value Problem asks for a specific solution to a differential equation
satisfying an initial condition of the form y(t0) = y0.

Example Problem: Using the general solution given above (y = x − 1 + C
ex ),

find a solution to the initial value problem y ′ = x − y with the property that
y(0) = 0.

I We have Y (0) = 0− 1 + C
e0 = C − 1. We set C − 1 = 0→ C = 1,

y(t) = x − 1 + 1
ex .

(At the end of your lecture notes, we give an approximate numerical
solution to this problem using Euler’s method. )
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Direction Fields

If we have a differential equation of the type

y ′ = F (x , y)

where F (x , y) is an expression in x and y only, then the slope of a solution
curve at a point (x , y) is F (x , y). We can use the formula to calculate the
slopes of the graphs of the solutions of the differential equation that pass
through particular points on the plane. We can draw a picture of these slopes
by drawing a small line (or arrow )indicating the direction of the curve at each
point we have considered.

Example Consider the equation y ′ = y − x

I The graph of any solution to this differential equation passing through the
point (x , y) = (2, 1) has slope

I y ′ = y − x = 1− 2 = −1.

I The graph of any solution to this differential equation passing through the
point (x , y) = (0, 1)has slope

I y ′ = y − x = 1− 0 = 1.

I The graph of any solution to this differential equation passing through the
point (x , y) = (−1, 1)has slope

I y ′ = y − x = 1− (−1) = 2.
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Direction Fields

We can get some idea of what the graphs of the solutions to differential
equation look like by drawing a Direction Field where we draw a short line
segment (or arrow) with slope y − x at each point (x , y) on the plane to
indicate the direction of a solution running through that point. The picture
below shows a computer generated direction field for the equation y ′ = y − x .
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For any Differential equation of the form y ′ = F (x , y) we can make a direction
field by drawing an arrow with slope F (x , y) at many points in the plane. The
more points we include, the better the picture we get of the behavior of the
solutions.

Annette Pilkington Lecture 18 : Direction Fields and Euler’s Method



Direction Fields

We can use this picture to give a rough sketch of a solution to an initial value
problem.

Example Below is a sketch of a solution to the differential equation
y ′ = y − x , where y(1) = 3.
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we see that a solution to the initial value problem y ′ = y − x , y(1) = 3 passes
through the point (1.3) and follows the direction of the arrows.

Sketch a solution to the equation with y(2) = 0 on the vector field above.
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Direction Fields

We can use this picture to give a rough sketch of a solution to an initial value
problem.

Example Below is a sketch of a solution to the differential equation
y ′ = y − x , where y(1) = 3.
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we see that a solution to the initial value problem y ′ = y − x , y(1) = 3 passes
through the point (1.3) and follows the direction of the arrows.

Sketch a solution to the equation with y(2) = 0 on the vector field above.
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Direction Fields

In this way we can get some idea of what the family of solutions to the
differential equation y ′ = y − x look like.
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Euler’s Method

Euler’s method makes precise the idea of following the arrows in the direction
field to get an approximate solution to a differential equation of the form
y ′ = F (x , y) satisfying the initial condition y(x0) = y0.
For such an initial value problem we can use a computer to generate a table of
approximate numerical values of y for values of x in an interval [x0, b]. This is
called a numerical solution to the problem.

Example Estimate y(4) where y(x) is a solution to the differential equation
y ′ = y − x which satisfies the initial condition y(2) = 0, on the interval
2 ≤ x ≤ 4.

Euler’s method approximates the path of the solution curve with a series of line
segments following the directions of the arrows in the direction fields.

I First we choose the Step Size of our approximation, which will be the
change in the value of x on each line segment. In general a smaller step
size means shorter line segments and a better approximation. We will use
h = 0.2 as the step size for our example above.
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Euler’s Method

Example Estimate y(4) where y(x) is a solution to the differential equation
y ′ = y − x which satisfies the initial condition y(2) = 0, on the interval
2 ≤ x ≤ 4. Use a step size of h = 0.2.

The first point on our approximating curve is determined by the initial
condition y(x0) = y0. The corresponding point on the curve is (x0, y0).

x0 , y0
2.0 2.5 3.0 3.5 4.0 4.5
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0 y0

I In the case of the above example, the initial value gives us that the first
point on our approximating curve is (2, 0)

I The green curve shown here is the actual solution to the differential
equation which passes through the point (2, 0). It is the curve that we are
trying to estimate.
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Euler’s Method

To get the next (defining) point on the curve, we follow the arrow in the
direction field which starts at (x0, y0) (with slope F (x0, y0)) until we get to a
point where x1 = x0 + h. (recall h is the step size).

x1 , y1
2.0 2.5 3.0 3.5 4.0 4.5

-15

-10
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-0.4 y1

I We can write down algebraic formulas for the endpoint of this arrow
(x1, y1). We know that x1 = x0 + h. We have the slope of the arrow is
F (x0, y0) = y1−y0

x1−x0
= y1−y0

h
.

I Therefore y1 − y0 = hF (x0, y0) or y1 = y0 + hF (x0, y0).

I In our example x1 = 2 + .2 = 2.2 and y1 = 0 + (.2)(0− 2) = −.4.

Annette Pilkington Lecture 18 : Direction Fields and Euler’s Method



Euler’s Method

We draw the first segment of our approximating curve as the line segment
between the points (x0, y0) and (x1, y1).

x2 , y22.0 2.5 3.0 3.5 4.0 4.5
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-0.92 y2

I To get the next (defining) point on the curve, , we follow the arrow in
the direction field which starts at (x1, y1) (with slope F (x1, y1)) and which
ends at x2 = x1 + h. In other words, we repeat the process starting at
(x1, y1). By the same argument, we get the following equations for the
point (x2, y2):
x2 = x1 + h, and y2 = y1 + hF (x1, y1).

I The second line segment of our approximating curve is the line between
(x1, y1) and (x2, y2).
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Euler’s Method

We repeat the process until xn = a, if we wish to approximate y(a). Note that
we should choose the step size, h, so that a−x0

h
is an integer n.

x10 , y10

2.0 2.5 3.0 3.5 4.0 4.5
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-13.5752 y10

I In our approximation, we wanted to estimate y(4). We started at the
initial point with x = 2. With a step size of h = 0.2, we get to our
approximation in 4−2

h
= 4−2

.2
= 2

.2
= 10 steps.

I Note how our approximate solution(in red) compares to the true solution
(in green). To improve accuracy, one can make the step size smaller.
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Euler’s Method

In Summary, to use this approximation;

I We first decide on the step size h. (If we want to estimate y(x0 + L)
where y is a solution to the IVP y ′ = F (x , y), y(x0) = y0, and we wish to
use n steps, then the step size should be L/n. )

I Our series of approximations is then given by

I Initial point = (x0, y0).

I y1 = y0 + hF (x0, y0) new point on approximate curve = (x1, y1) =
(x0 + h, y1).

I y2 = y1 + hF (x1, y1) new point on approximate curve = (x2, y2) =
(x0 + 2h, y2).

I y3 = y2 + hF (x2, y2) new point on approximate curve = (x3, y3) =
(x0 + 3h, y3).

...

I yi = yi−1 + hF (xi−1, yi−1) corresponding point on approximate curve =
(xi , yi ) = (x0 + ih, yi )

...
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Euler’s Method

Example Use Euler’s method with step size h = 0.2 to find an approximation
for y(4), where y is a solution to the initial value problem

y ′ = y − x , y(2) = 0.

i xi = x0 + ih yi = yi−1 + h(yi−1 − xi−1)
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Euler’s Method

Example Use Euler’s method with step size h = 0.2 to find an approximation
for y(4), where y is a solution to the initial value problem

y ′ = y − x , y(2) = 0.

i xi = x0 + ih yi = yi−1 + h(yi−1 − xi−1)

0 2 0

1 2.2 −0.4

2 2.4 −0.92

3 2.6 −1.584

4 2.8 −2.4208

5 3 −3.46496

6 3.2 −4.75795

7 3.4 −6.34954

8 3.6 −8.29945

9 3.8 −10.6793

10 4 −13.5752
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